Signaling Crosstalk between Tubular Epithelial Cells and Interstitial Fibroblasts after Kidney Injury.
نویسندگان
چکیده
BACKGROUND A wide variety of kidney diseases ultimately lead to tubulointerstitial damage. The initial site of injury is usually the renal tubules, with activation of fibroblasts occurring later. Self-limited disease is characterized by transient cellular activation with timed deactivation and ultimately a return to normal functioning, whereas sustained responses characterize chronic disease and the development of irreversible fibrosis. The underlying molecular and cellular mechanisms of this cascade of events remain an area of active research. Current data overwhelmingly support a role for crosstalk between the tubular epithelium and the interstitial fibroblast that mediates both repair/regeneration and progressive disease. This epithelial-mesenchymal communication (EMC) is regulated by a variety of soluble ligands binding to cell surface receptors to induce intracellular signaling events. SUMMARY EMC is an important mechanism whereby tubular epithelium and fibroblasts/mesenchymal cells crosstalk to affect renal physiology and pathology. Numerous soluble factors such as sonic hedgehog, Wnt ligands, transforming growth factor-β, hepatocyte growth factor, connective tissue growth factor, and angiotensin II all participate in bidirectional EMC. Recent studies have also identified exosomes as a vehicle to mediate EMC during kidney injury. In general, while the short-term activity of EMC factors is renoprotective, prolonged activation of these factors leads to chronic disease and fibrosis. KEY MESSAGES The discovery of a complex and intricate system of communication between tubular cells and fibroblasts is a new paradigm in our understanding of renal fibrosis. An appreciation of both their regenerative and pathologic functions will inform the development and use of targeted therapeutic interventions.
منابع مشابه
Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice
Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury.Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old,...
متن کاملRenal Tubule Repair: Is Wnt/β-Catenin a Friend or Foe?
Wnt/β-catenin signaling is extremely important for proper kidney development. This pathway is also upregulated in injured renal tubular epithelia, both in acute kidney injury and chronic kidney disease. The renal tubular epithelium is an important target of kidney injury, and its response (repair versus persistent injury) is critical for determining whether tubulointerstitial fibrosis, the hall...
متن کاملReactive oxygen species differently regulate renal tubular epithelial and interstitial cell proliferation after ischemia and reperfusion injury.
Reactive oxygen species (ROS) function as an inducer of cell death and survival or proliferative factor, in a cell-type-specific and concentration-dependent manner. All of these roles are critical to ischemia-induced renal functional impairment and progressive fibrotic changes in the kidney. In an effort to define the role of ROS in the proliferation of tubular epithelial cells and of interstit...
متن کاملP2X7 receptors mediate deleterious renal epithelial-fibroblast cross talk.
Peritubular fibroblasts in the kidney are the major erythropoietin-producing cells and also contribute to renal repair following acute kidney injury (AKI). Although few fibroblasts were observed in the interstitium adjacent to damaged tubular epithelium in the early phase of AKI, the underlying mechanism by which their numbers were reduced remains unknown. In this study, we tested the hypothesi...
متن کاملMolecular Mechanism in Renal Fibrosis – A Review
Renal fibrosis is the hallmark of various chronic kidney diseases (CKD). Transforming growth factor beta (TGF-b) is recognized as a vital mediator in renal fibrosis as it induces production of extracellular matrix to cause renal scarring. In chronic kidney disease, fibroblast dysfunction causes renal fibrosis and renal anaemia. Renal fibrosis is mediated by the accumulation of myofibroblasts, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kidney diseases
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2016